(1+4x2+10x4+20x6)−34≡(1+4y+10y2+20y3)−34
Therefore we need to find the coefficient of y3
General term of expansion is −34(−34−1)⋯(−34−p+1)b!c!d!(4)b(10)c(20)dxb+2c+3d, where p=b+c+d
We want to find the coefficient of y3, therefore b+2c+3d=3. This is possible for,
p=1,b=0,c=0,d=1;p=2,b=1,c=1,d=0;p=3,b=3,c=0,d=0
∴ the coefficient of y3=(−34)(20)+(−34)(−74)(4)(10)+(−34)(−74)(−114)3!(4)3
=−15+1052−772=−1