[1+(3x−2x3)]10
General term, Tr+1=10Cr(3x−2x3)r=10Cr.xr(3−2x2)r
Expansion for (3−2x2)r would give eneral term
Ty+1=rCy(3)y(−2x2)r−y,0≤y≤r
Hence, Tr+1=10Cr.xrrCy.3y(−2)r−y(x2)r−y
=10CrrCy3y(−2(r−yxr+2r−2y
We have, 3r−2y=7
As y≤r, 3r≥7
⇒ cases: r=3,y=1, r=4,y=x
r=5,y=4, r=6; r=7,y=7; r=9,y=10
⇒ Coefficient =10C3⋅3C1⋅3(−2)2+10C5⋅5C4⋅34(−2)+10C737(−2)o.