General term of expansion is 5!a!b!c!d!(−2)b3c(−4)dxb+2c+3d, where a+b+c+d=4
We want to find the coefficient of x8, therefore b+2c+3d=8. This is possible for,
a=0,b=0,c=4,d=0;a=0,b=1,c=2,d=1;a=0,b=2,c=0,d=2;a=1,b=0,c=1,d=2
∴ the coefficient of x4=4!0!0!4!0!(−2)034(−4)0+4!0!1!2!1!(−2)132(−4)1+4!0!2!0!2!(−2)230(−4)2+4!1!0!1!2!(−2)031(−4)2
=81+864+384+576=1905