(1−x23+x49)−2≡(1−y3+y29)−2
Therefore we need to find the coefficient of y4
General term of expansion is (−2)(−3)...(−2−p+1)b!c!(−13)b(19)cyb+2c, where p=b+c
We want to find the coefficient of y4, therefore b+2c=4. This is possible for,
p=2,b=0,c=2;p=3,b=2,c=1;p=4,b=4,c=0
∴ the coefficient of y4=(−2)(−3)2!(19)2+(−2)(−3)(−4)2!(−13)2(19)+(−2)(−3)(−4)(−5)4!(−13)4
=381−1281+581=−481