Let the required complex number be z=(x+iy). Then,
|z+1|=z+2(1+i)
⇒|(x+iy)+1|=(x+iy)+2(1+i)
⇒√(x+1)2+y2=(x+2)+i(y+2)
⇒√(x+1)2+y2=(x+2) and y+2=0 [equating real parts and imaginary parts separately]
⇒y=−2 and √(x+1)2+(−2)2=(x+2)
⇒y=−2 and √x2+2x+5=(x+2)
⇒y=−2 and (x2+2x+5)=(x+2)2
⇒x2+2x+5=x2+4x+4 and y=−2
⇒2x=1 and y=−2⇒x=12 and y=−2.
Hence, the required complex number is z=(12−2i).