Given : z+√2|(z+1)|+i=0
Let z=x+iy
⇒ x+iy+√2|x+1+iy|+i=0
⇒ x+i(y+1)+√2√(x+1)2+y2=0
⇒ x+i(y+1)+√2√x2+y2+2x+1=0
Now, comparing the real and imaginary parts, we get
x+√2√x2+y2+2x+1=0 ⋯(1)
y+1=0
⇒ y=−1 ⋯(2)
Using equations (1) and (2), we get
⇒ x+√2√x2+2x+2=0
⇒ x=−√2√x2+2x+2
Squaring on both sides, we get
⇒ x2=2(x2+2x+2)
⇒ x2+4x+4=0
⇒(x+2)2=0
⇒ x=−2
Hence, z=x+iy=−2−i