Find the complex numbers z which simultaneously satisfy the equations
∣∣∣z−12z−8i∣∣∣=53 and ∣∣∣z−4z−8∣∣∣=1.
Open in App
Solution
Putting z=x+iy, the given equation become ∣∣∣x+iy−12x+iy−8i∣∣∣=53 and ∣∣∣x+iy−4x+iy−8∣∣∣=1 or 9|(x−12)+iy|2=25|x+i(y−8)|2 and |(x−4)+iy|2=|(x−8)+iy|2 or 9[(x−12)2+y2]=25[x2+(y−8)2] and (x−4)2+y2=(x−8)2+y2 The above equation can be written as [3(x−12)]2−(5x)2=[5(y−8)]2−(3y)2 and (x−4)2−(x−8)2=0 Apply a2−b2=(a+b)(a−b) (8x−36)(−2x−36)=(8y−40)(2y−40) .....(1) and (2x−12)(4)=0∴x=6 .....(2) and putting in (1), we get 12(−48)=8×2(y−5)(y−20) or y2−25y+136=0 or (y−8)(y−17)=0 ∴y=8,17 Hence z1=(6,8) and z2=(6,17) i.e. z1=6+8i and z2=6+17i are two solutions.