Find the components of vector →a=3^i+4^j along the direction of vectors ^i+^j & ^i−^j.
Component along the vector ^i+^j
=(Acosθ)^B=(→A.→B)B2→B=(3^i+4^j).(^i+^j)(√2)2(^i+^j)
=3+42(^i+^j)=72(^i+^j)
Component along the vector ^i−^j
=(Acosθ)^B=(→A.→B)B2→B=(3^i+4^j).(^i−^j)(^i−^j)(√2)2
=(3−4)2(^i−^j)=−12(^i−^j)