If the line y=mx be common to both the pairs then
putting mx for y in the two equations, we get
ax2+2hmx2+bx2m2=0
or bm2+2hm+a=0
dx2+2h mx2+b x2m2=0
or bm2+2hm+d=0
∴m2(dh−ah)=2mab−db=1bh−bh by (1),(2)
∴m=2(dh−ah)(ab−db)
and m=(ab−db)2(bh−bh).
∴2(dh−ah)(ab−db)=(ab−db)2(bh−bh)
or (ab−db)2−4(dh−ah)(bh−bh)=0
is the required condition.