m1x−y+a1=0m2x−y+a2=0m3x−y+a3=0
Lines meet in a point if ∣∣ ∣∣a1b1c1a2b2c2a3b3c3∣∣ ∣∣=0
∣∣ ∣∣m1−1a1m2−1a2m3−1a3∣∣ ∣∣=0
Simplifying using properties of determinant
∣∣ ∣∣m1−m20a1−a2m2−m30a2−a3m3−1a3∣∣ ∣∣=0
Expanding along C2
0+0−1{(m1−m2)(a2−a3)−(m2−m3)(a1−a2)}=0m1a2−m1a3−m2a2+m2a3−m2a1+m2a2+m3a1−m3a2=0m1a2−m1a3+m2a3−m2a1+m3a1−m3a2=0m1(a2−a3)+m2(a3−a1)+m3(a1−a2)=0
is the required condition.