Find the conjuagates of the following complex numbers :
(i) 4−5i(ii) 13+5i(iii) 11+i(iv) (3−i)22+i(v) (1+i)(2+i)3+i(vi) (3−2i)(2+3i)(1+2i)(2−i)
(i) 4 - 5i
If z = x + iy is a complex number, then the conjugate of z denoted by ¯z is defined as ¯z = x - iy
let z = 4 - 5i
⇒ ¯z = 4 + 5 i
(ii) 13+5iLet z=13+5i=13+5i×(3−5i)3−5i=3−5i32+52⇒ z=3−5i9+25So ¯¯¯z=3+5i34=334+534i
(iii) 11+iLet z=11+i=11+i×(1−i)(1−i)=1−i12+11=1−i2∴ ¯¯¯z =1+i2=12+12i
(iv) (3−i)22+iLet z=(3−i)22+i=32+i2−2×3×i2+i=9−1−6i2+i=8−6i2+i=8−6i2+i×2−i2−i=8(2−i)−6i(2−i)22+12=16−8i−12i−64+1=10−2i5⇒ z=2−4iHence, ¯z=2+4i
(v) (1+i)(2+i)3+iLet z=(1+i)(2+i)3+i=2+i+i(2+i)3+i=2+i+2i−13+i=1+3i3+i=(1+3i)3+i×(3−i)(3−i)=3−i+3i(3−i)32+12=3−i+9i+39+1=6+8i10=2(3+4i)10⇒ z=3+4i5Hence ¯¯¯z=3−4i535−45i
(vi) (3−2i)(2+3i)(1+2i)(2−i)Let z=(3−2i)(2+3i)(1+2i)(2−i)=3(2+3i)−2i(2+3i)2−i+2i(2−i)=6+9i−4i+62−i+4i+2=12+5i4+3i=12+5i4+3i×4−3i4−3i=12(4−3i)+5i(4−3i)4(4−3i)+3i(4−3i)=48−36i+20i+1516−12i+12i+9=63−16i16+9⇒ z=63−16i25∴ ¯¯¯z=63+16i25=6325+1625i