7
You visited us
7
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Existence of Limit
Find the cons...
Question
Find the constants a and b such that
lim
x
→
∞
(
√
x
2
−
x
+
1
−
a
x
−
b
)
=
0
Open in App
Solution
lim
x
→
∞
(
√
x
2
−
x
+
1
−
a
x
−
b
)
=
0
let
1
x
=
t
x
→
∞
⇒
t
→
0
lim
t
→
0
(
√
1
t
2
−
1
t
+
1
−
a
t
−
b
)
=
0
l
i
m
t
→
0
(
√
t
2
−
t
+
1
t
−
a
t
−
b
)
=
0
⇒
lim
t
→
0
√
1
+
(
t
2
−
t
)
−
a
−
b
t
t
=
0
⇒
lim
t
→
0
1
+
(
t
2
−
t
)
−
a
−
b
t
t
=
0
[
u
s
i
n
g
(
1
+
x
)
n
=
1
+
n
x
f
o
r
x
→
0
]
⇒
lim
t
→
0
(
1
−
a
)
+
(
−
1
−
b
)
t
+
t
2
t
=
0
For time to exist
1
−
a
=
0
⇒
a
=
1
lim
t
→
0
−
(
1
+
b
)
t
+
t
2
t
=
l
i
m
x
→
0
−
(
1
−
b
)
+
t
=
−
(
1
+
b
)
=
0
(given)
b
=
−
1
Suggest Corrections
0
Similar questions
Q.
The values of constants
a
and
b
so that
lim
x
→
∞
(
x
2
+
1
x
+
1
−
a
x
−
b
)
=
0
Q.
The values of constants a and b so that
lim
x
→
∞
(
x
2
+
1
x
+
1
−
a
x
−
b
)
=
1
2
, are
Q.
Find the value of
a
+
b
if
lim
x
→
∞
(
√
x
2
−
x
+
1
−
a
x
−
b
)
=
0
,
a
>
0.
Q.
The values of constants a and b so that
l
i
m
x
→
∞
(
x
2
+
1
x
+
1
−
a
x
−
b
)
=
1
2
,
a
r
e