Find the continued products:
(i) (x+1)(x−1)(x2+1)
(ii) (x−3)(x+3)(x2+9)
(iii) (3x−2y)(3x+2y)(9x2+4y2)
(iv) (2p+3)(2p−3)(4p2+9)
(i) (x+1)(x−1)(x2+1)={(x2)−(1)2}(x2+1)=(x2−1)(x2+1)=(x2)2−(1)2=x4−1
(ii) (x−3)(x+3)(x2+9)={(x2)−(3)2}(x2+9)=(x2−9)(x2+9)=(x2)2−(9)2=x4−81
(iii) (3x−2y)(3x+2y)(9x2+4y2)={(3x)2−(2y)2}(9x2+4y2)=(9x2−4y2)(9x2+4y2)=(9x2)2−(4y2)2=81x4−16y4
(iv) (2p+3)(2p−3)(4p2+9)={(2p)2−(3)2}(4p2+9)=(4p2−9)(4p2+9)−(4p2)2−(9)2=16p4−81