Consider the given function.
{x+1ifx≥1x2+1ifx<1}
x+1ifx≥1
x2+1ifx<1
At x=1
L.H.L
limx→1−f(x)=limh→0f(1−h)
=limh→0(x2+1)
=limh→0((1−h)2+1)
=limh→0(12+h2−2h+1)
=2
R.H.L
limx→1+f(x)=limh→0f(1+h)
=limh→0(x+1)
=limh→0((1−h)+1)
=limh→0(1−h+1)
=2
L.H.L.=R.H.L.
Hence, this is the continues at x=1