Let C and D be the points of trisection.
Then, AC=CD=DB.
Let, A(1,−2)=A(x1,y1)
And, B(−3,4)=B(x2,y2)
Now, C divides AB in the ratio 1:2 and D divides AB in the ratio 2:1.
Therefore,
Co-ordinates of C using section formula,
=[m×x2+n×x1m+n,m×y2+n×y1m+n]
=(1×(−3)+2×(1)2+1,1×(4)+2×(−2)2+1)
=(−13,0)
And co-ordinates of D,
=(2×(−3)+1×(1)2+1,2×(4)+1×(−2)2+1)
=(−53,2)
Hence, the two points of trisection are C(−13,0),D(−43,2).