wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Find the coordinate of points which trisect the line segment joining (1,2) and (3,4).

Open in App
Solution

Let C and D be the points of trisection.

Then, AC=CD=DB.

Let, A(1,2)=A(x1,y1)

And, B(3,4)=B(x2,y2)

Now, C divides AB in the ratio 1:2 and D divides AB in the ratio 2:1.

Therefore,

Co-ordinates of C using section formula,

=[m×x2+n×x1m+n,m×y2+n×y1m+n]

=(1×(3)+2×(1)2+1,1×(4)+2×(2)2+1)

=(13,0)


And co-ordinates of D,

=(2×(3)+1×(1)2+1,2×(4)+1×(2)2+1)

=(53,2)

Hence, the two points of trisection are C(13,0),D(43,2).


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Law of Conservation of Energy
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon