Let the coordinates of the required point be (h,k)
Given parabola x2+7x+2
∴k=h2+7h+2
Using point - line distance formula for the line 3x−3, we get,
D=|3h−k−3|√32+(−1)2
using the value of k, we get,
D=|3h−h2−7h−2−3|√10
∴D=h2+4h+5√10
upon differentiation, we get,
dDdh=2h+4√10
for maxima and minima, we have,
dDdh=0
⇒2h+4√10=0
upon simplification, we get,
h=−2
Now,
d2Ddh2=2√10>0
∴h=−2 is the point of minima
substituting the value of h to obtain k, we get,
k=(−2)2+7(2)+2
k=−8
Therefore, point closest to the parabola is (−2,−8)