Find the coordinates of a point which equidistant from the four points o(0,0,0),A(l,0,0),B(0,m,0)and C(0,0,n).
let P(x,y,z) be required point. Then , OP=PA=PB=PC.
Now , OP=PA⇒OP2=PA2
⇒x2+y2+z2=(x−l)2+(y−0)2+(z−0)2
[∵distence between two points=√(x2−x1)2+(y2−y1)2+(x2−z1)2]
⇒x2+y2+x2=x2+l2−2lx+y2+z2
⇒l2−2lk=0⇒x=12 [∵l≠0]
Sinmilarly,0P=PB⇒y=m2
and ,OP=PC⇒z=n2
Hence, the coordinates of the required point are (l2,m2,n2)