Consider the given points of a triangle
A(x1,y1)=(7,1)
B(x2,y2)=(3,5)
C(x3,y3)=(2,0)
Let O be the circumcentre
O(x,y)=(x1+x2+x33,y1+y2+y33)
O(x,y)=(7+3+23,1+5+03)
O(x,y)=(123,63)
O(x,y)=(4,2)
Now, radius of circumcircle
Let D(x4,y4) be the middle point of AB.
The
D(x4,y4)=(x1+x22,y1+y22)
D(x4,y4)=(7+32,1+52)
D(x4,y4)=(5,3)
radius of circumcircle is
=OD=√(x−x4)2+(y−y4)2
OD=√(4−5)2+(2−3)2
OD=√1+1=√2
Hence, this is the answer.