Find the coordinates of the centre and radius of each of the following circles :
(i) x2+y2+6x−8y−24=0
(ii) 2x2+2y2−3x+5y=7
(iii) 12(x2+y2)+x cosθ+ysinθ−4=0.
(iv) x2+y2−ax−by=0
The general equation of circles is
x2+y2+2gx+2fy+c=0 …(i)
centre = (-g, -f)
radius =√g2+f2−c …(A)
(i) x2+y2+6x−8y−24=0
Hence g=3,f=−4,c=−24
Thus,
centre = (-3, 4)
radius =√g2+f2−c=√9+16+24=√49
∴ radius = 7
(ii) 2x2+2y2−3x+5y−7=0⇒x2+y2−32x+52y−72=0
Hence, g=−34,f=54,c=−72
Thus,
Centre =(34−54)
radius =√(34)+(54)2+72=√916+2516+72=√904
∴ radius =3√104
(iii) 12(x2+y2)+x cosθ+y sinθ+−4=0⇒x2+y2+2x cosθ+2y sinθ−8=0
Comparing with(i)
Hence g=cosθ,f=sinθ,c=−8
Thus.
centre =(−cosθ,−sinθ)
radius =√cos2θ+sin2θ+8=√1+8=3
radius =3
(iv) x2+y2−ax−by=0
Hence g=a2,f=−b2,c=0
Thus,
centre (=a2,b2)
radius = √a24+b24+0=√a2+b22
radius =√a2+b22