wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the coordinates of the centre and radius of each of the following circles :

(i) x2+y2+6x8y24=0
(ii) 2x2+2y23x+5y=7
(iii) 12(x2+y2)+x cosθ+ysinθ4=0.
(iv) x2+y2axby=0

Open in App
Solution

The general equation of circles is
x2+y2+2gx+2fy+c=0 (i)
centre = (-g, -f)
radius =g2+f2c (A)

(i) x2+y2+6x8y24=0
Hence g=3,f=4,c=24
Thus,
centre = (-3, 4)
radius =g2+f2c=9+16+24=49
radius = 7

(ii) 2x2+2y23x+5y7=0x2+y232x+52y72=0
Hence, g=34,f=54,c=72
Thus,
Centre =(3454)
radius =(34)+(54)2+72=916+2516+72=904
radius =3104

(iii) 12(x2+y2)+x cosθ+y sinθ+4=0x2+y2+2x cosθ+2y sinθ8=0
Comparing with(i)
Hence g=cosθ,f=sinθ,c=8
Thus.
centre =(cosθ,sinθ)
radius =cos2θ+sin2θ+8=1+8=3
radius =3

(iv) x2+y2axby=0
Hence g=a2,f=b2,c=0
Thus,
centre (=a2,b2)
radius = a24+b24+0=a2+b22
radius =a2+b22


flag
Suggest Corrections
thumbs-up
4
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definition and Standard Forms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon