Find the coordinates of the centre of the circle passing through the points (0, 0), (–2, 1) and (–3, 2). Also, find its radius.
Let P (x, y) be the centre of the circle passing through the points 0 (0, 0), A (-2, 1) and B (-3, 2). Then, OP = AP = BP
Now, OP = AP ⇒ OP2=AP2
⇒ x2+y2=(x+2)2+(y−1)2
⇒ x2+y2=x2+y2+4x−2y+5
⇒ 4x-2y+ 5 =0 ....(1)
and, OP = BP ⇒ OP2=BP2
⇒ x2+y2=(x+3)2+(y−2)2
⇒ x2+y2=x2+y2+6x−4y+13
⇒ 6x - 4y + 13 = 0 .......(2)
On solving equations (1) and (2), we get
x = 32 and y = 112
Thus , the coordinates of the centre are (32,112)
Now, Radius = OP = √x2+y2 = √94+1214
= √1304 units .