Let A(4,6), B(0,4), C(6,2) be the vertices of the given
△ABC.
Let P(x,y) be the circumcentre of △ABC. Then,
PA=PB=PC⟹PA2=PB2=PC2
Now, PA2=PB2
(x−4)2+(y−6)2=(x−0)2+(y−4)2
x2+y2−8x−12y+52=x2+y2−8y+16
8x+4y=36
2x+y=9 .......(1)
Again, PB2=PC2
(x−0)2+(y−4)2=(x−6)2+(y−2)2
x2+y2−8y+16=x2+y2−12x−4y+40
12x−4y=24
3x−y=6 .....(2)
Solving equation 1 and 2, we get,
x=3,y=3
Therefore, the coordinates of circumcentre of △ABC are P(3,3).
Circumradius = PA=√(4−3)2+(6−3)2=√10 units