Find the coordinates of the foci, the vertices, the eccentricity and the length of the latus rectum of the hyperbola,
5y2−9x2=36
The given equation of hyperbola is, 5y2−9x2=36
5y236−9x236=1⇒y2365−x24=1Which is of the form y2a2−x2b2=1
The foci and vertices of the hyperbola lie on y - axis
∴a2=365⇒a=6√5andb2=4⇒b=2Nowc2=a2+b2=365+4=565⇒c=√565∴Coordinates of foci are(0,±c)i.e.(0,±√565)Coordinates of vertices are(0,±a)i.e.(0,±6√5)Eccentricity(e)=ca=√5656√5=√566=2√146=√143length of latus rectum=2b2a=2×46√6=2×4×√56=4√53