Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.
x2100+y2400=1.
The equation of give ellipse is,
x2100+y2400=1.
Now 400>100⇒a2=400 and b2=100
so the equation of ellipse in standard form is,
y2a2+x2b2=1.∴a2=400⇒a=20andb2=100⇒b=10We know that c=√a2−b2∴c=√400−100=√300=10√3Coordinates of foci are(0,±c)i.e.(0,±10√3)Coordinates of vertices are(0,±a)i.e.(0,±20)Length of major axis=2a=2×20=40Length of minor axis=2b=2×10=20Eccentricity(e)=ca=10√320=32Length of latus rectum=2b2a=2×10020=10.