Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.
x225+y2100=1
the equation of given ellipse is
x225+y2100=1
Now 100>25⇒a2=100 and b2=25
So the equation of ellipse in standard form is
y2a2+x2b2=1∴a2=100⇒a=10And b2=25⇒b=5We know that c=√a2−b2∴c=√100−25=√75=5√3
∴Coordinates of foci are(0,±c)i.e.(0,±5√3)Coordinates fo vertices are(0,±a)i.e.(0±10)Length of major axis=2a=2×10=20Length of minor axis=2b=2×5=10Eccentricity(e)=ca=5√310=√32Length of latus rectum=2b2a=2×2510=5