Find the coordinates of the foot of perpendicular drawn from the point A(-1, 8, 4) to the line joining the points B(0,-1,3) and C(2, -3, -1). Hence find the image of point A in line BC.
Equation of line BC: x−02−0=y−(−1)−3−(−1)=z−3−1−3 i.e.,x2=y+1−2=z−3−4=λ say
∴ Coordintes of random point on this line is P(2λ,−2λ−1,−4λ+3).
The AP⊥BC so, 2(2λ+1)−2(−2λ−9)−4(−4λ−1)=0
⇒λ=−1 ∴P(−2,1,7).
Let Q(h, p, s) be the image of A in the line BC,
So P must be the mid-point of AQ.
∴∴P(h−12,p+82,s+42)=P(−2,1,7)
On comparing the coordinates, we get h = -3, p=-6, s= 10,
Hence the image is Q(-3, -6, 10).