wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the coordinates of the foot of the perpendicular drawn from the 2^i^j+5^k point to the line ¯r=(11^i2^j8^k)+λ(10^i4^j11^k)

Open in App
Solution

Let the foot of perpendicular be B(x1,y1,z1) and the given point be A(2,1,5)

So, putting r=x1^i+y1^j+z1^k in the equation of line we get

(x1^i+y1^j+z1^k)=(11^i2^j8^k)+λ(10^i4^j11^k)

x1^i+y1^j+z1^k=(11+10λ)^i(2+4λ)^j(8+11λ)^kx1=11+10λy1=(2+4λ)z1=(8+11λ)

Direction Ratio of line AB are x12,y1+1,z15

since, line AB is to the given line

Therefore,
10(x12)4(y1+1)11(z15)=010(11+10λ2)4(24λ+1)11(811λ5)=010(10λ+9)4(4λ1)11(11λ13)=0100λ+90+16λ+4+121λ+143=0237λ+237=0237λ=237λ=1

So,
x1=11+10×1=1110=1y1=(24)=2z1=(811)=3

Hence, coordinates of the foot of the perpendicular from 2^i^j+5^k to the given line are (1,2,3).

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definition and Standard Forms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon