Let the foot of perpendicular be
B(x1,y1,z1) and the given point be
A(2,−1,5)
So, putting →r=x1^i+y1^j+z1^k in the equation of line we get
(x1^i+y1^j+z1^k)=(11^i−2^j−8^k)+λ(10^i−4^j−11^k)
⇒x1^i+y1^j+z1^k=(11+10λ)^i−(2+4λ)^j−(8+11λ)^k⇒x1=11+10λy1=−(2+4λ)z1=−(8+11λ)
Direction Ratio of line AB are x1−2,y1+1,z1−5
since, line AB is ⊥ to the given line
Therefore,
10(x1−2)−4(y1+1)−11(z1−5)=0⇒10(11+10λ−2)−4(−2−4λ+1)−11(−8−11λ−5)=0⇒10(10λ+9)−4(−4λ−1)−11(−11λ−13)=0⇒100λ+90+16λ+4+121λ+143=0⇒237λ+237=0⇒237λ=−237⇒λ=−1
So,
x1=11+10×−1=11−10=1y1=−(2−4)=2z1=−(8−11)=3
Hence, coordinates of the foot of the perpendicular from 2^i−^j+5^k to the given line are (1,2,3).