Find the coordinates of the foot of the perpendicular from the point (−1, 3) to the line 3x−4y−16=0.
Let A (−1, 3) be the given point.
Also, let M (h, k) be the foot of the perpendicular drawn from A (−1, 3) to the line 3x−4y−16=0
Point M (h, k) lies on the line 3x−4y−16=0
3y−4k−16=0 ...(i)
Lines 3x−4y−16=0 and AM are perpendicular
∴ k−3h+1×34=−1
⇒ 4h+3k−5=0 ...(ii)
Solving eq. (i) and eq (ii) by cross multiplication, we get:
h20+48=k−64+15=19+16
a=6825, b=−4925
Hence, the coordinates of the foot of perpendicular are (6825,−4925)