Given equation are
2x−y−9=0 ...... (1)
x−2y+9=0 ...... (2)
x+y−9=0 ...... (3)
On soving (1), (2) and (3) to, and we get,
(x1, y1) = (9, 9)
(x2, y2) = (3, 6)
(x3, y3) = (6, 3)
Orthocentre is
⇒(x1+x2+x33, y1+y2+y33)
⇒(9+3+63, 9+6+33)
⇒(183, 183)
⇒(6, 6)
Hence this is the answer.