Slope of AB =mAB=0−(−2)1−(−5)=13
Draw CE perpendicular AB
mABmCE=−113mCE=−1⇒mCE=−3
Equation of CE is
y+4=−3(x−2)y+4=−3x+6y+3x=2.......(i)
Now slope of BC =mBC=−4−02−1=−4
Draw AD perpendicular BC
mBCmAD=−1−4mAD=−1⇒mAD=14
Equation of AD is
y+2=14(x+5)4y+8=x+5x−4y=3......(ii)
Orthocentre is the point of intersection of perpendicular from opposite vertices .So it is the point of intersection of AD and CE
Solving (i) and (ii)
⇒x=1113,y=−713
So the orthocentre of triangle is (1113,−713)