The correct option is
A (3, -3)
Given-
Points A(x1,y1),B(x2,y2) & C(x3,y3) are equidistant from a point P.
To find out-
The coordinate of P
Solution-
Let the point beP(x,y).
Then, by the given condition PA=PB=PC.
We shall use distance formula d=√(x1−x2)2+(y1−y2)2
So, PA=√(x1−x)2+(y1−y)2=√(2+x)2+(3+y)2
PB=√(x2−x)2+(y2−y)2=√(1+x)2+(0+y)2
PC=√(x3−x)2+(y3−y)2=√(7−x)2+(6+y)2
∴PA=PB
⟹√(2+x)2+(3+y)2=√(1+x)2+(0+y)2
⟹2x+6y+12=0 ..........(i).
Again, PB=PC
⟹√(1+x)2+(0+y)2=√(7−x)2+(6+y)2
⟹8x−6y−42=0 ...........(ii).
Multiplying (i) by 4 and subtracting from (ii),
30y=90
⟹y=−3.
Substituting y=3 in (i),
2x+6×(−3)+12=0
⟹x=3.
∴ The required point is P(3,−3).