Find the coordinates of the point equidistant from three given points A(5, 3), B(5, -5) and C(1, -5).
Let the required point be P(x,y). Then AP=BP=CP
That is, (AP)2=(BP)2=(CP)2
This means, (AP)2=(BP)2
⇒⇒(x−5)2+(y−3)2=(x−5)2+(y+5)2
⇒⇒x2−10x+25+y2–6y+9=x2−10x+25+y2+10y+25
⇒⇒x2+y2−10x−6y+34=x2+y2–10x+10y+50
⇒⇒x2+y2−10x−6y–x2–y2+10x–10y=50−34
⇒⇒−16y=16
⇒⇒y=−16/16=−1
And (BP)2=(CP)2
⇒⇒(x−5)2+(y+5)2=(x−1)2+(y+5)2
⇒⇒x2−10x+25+y2+10y+25=x2−2x+1+y2+10y+25
⇒⇒x2+y2−10x+10y+50=x2+y2–2x+10y+26
⇒⇒x2+y2−10x+10y–x2–y2+2x–10y=26−50
⇒⇒−8x=−24
⇒⇒y=−24/−8=3
Hence the required point is (3,-1)