Then the distances PA=PB=PC=d as A(5,1),B(−3,−7) & C(7,−1) are equidistant from P.
Applying the distance formula,
P(p,q)≡(x1,y1) and A(5,1)≡(x2,y2)
d=√(x1−x2)2+(y1−y2)2,
dPA=√(p−5)2+(q−1)2,
P(p,q)≡(x1,y1) and B(−3,−7)≡(x2,y2)
dPB=√(p+3)2+(q+7)2 and
P(p,q)≡(x1,y1) and C(7,−1)≡(x2,y2)
dPc=√(p−7)2+(q+1)2
∴√(p−5)2+(q−1)2=√(p+3)2+(q+7)2
⟹−16p−16q=32
⟹p+q=−2 ........(i)
√(p+3)2+(q+7)2=√(p−7)2+(q+1)2
⟹20p+12q=−8
⟹5p+3q=−2 .........(ii).
Multiplying (i) by 5 & subtracting from (ii),
−2q=8
⟹q=−4.
Substituting q=−4 in (i),
p=−2−q=−2+4=2.
∴P(p,q)=P(2,−4).