Find the coordinates of the point P on AD such that AP : PD = 2 : 1
A
x1+x2+2x33,y1+y2+2y33
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2x1+2x2+x33,2y1+2y2+y33
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
x1+x2+x3,y1+y2+y3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
x1+x2+x33,y1+y2+y33
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Dx1+x2+x33,y1+y2+y33 ThepointsA(x1,y1),B(x2,y2)andC(x3y3)aretheverticesofΔABC.∴ThemedianADfromAwillmeetBCatDwhichisthemidpointofBC.So,bysectionformulaformidpoint,theco−ordinatesofDisD(x2+x32,y2+y32)=(x4,y4).NowPdividesADintheratiom:n=2:1.∴Theco−ordinatesofP(x,y)are,bythesectionformula,x=nx1+nx4m+n=x2+x32×2+x1×12+1=x1+x2+x33andy=ny1+ny4m+n=y2+y32×2+y1×12+1=y1+y2+y33∴P(x,y)=(x1+x2+x33,y1+y2+y33).Ans−P(x,y)=(x1+x2+x33,y1+y2+y33).