Find the coordinates of the point R on the line segment joining the points P(1,3) and Q(2,5) such that PR=35PQ.
Given that the point R(x,y) divides the line segment PQ joining the points P(x1,y1)=(1,3) & Q(x2,y2)=(2,5) in a ratio such that PRPQ=35 i.e PR<PQ.
⇒R divides PQ internally.
Here PRPQ=35
⇒PQPR=53
⇒PR+RQPR=53
⇒RQPR=23
⇒PRQR=32
∴m:n=3:2
∴ By the section formula, we have
x=nx1+mx2m+n& y=ny1+my2m+n
i.e x=2×1+3×22+3=85
and y=2×3+3×52+3=215
Therefore, x=85;y=215
Hence, option A is the correct answer.