The line through (3,−4,−5) and (2,−3,1) is given by
x−32−3=y+4−3+4=z+51+5
Or x−3−1=y+41=z+56 ...(i)
The plane determined by the points (1,2,3),(4,2,−3) and (0,4,3) is:
∣∣
∣∣x−1y−2z−34−12−2−3−30−14−23−3∣∣
∣∣=0
⇒∣∣
∣∣x−1y−2z−330−6−120∣∣
∣∣=0
⇒(x−1)(0+12)−(y−2)(0−6)+(z−3)(6−0)=0
⇒12(x−1)+6(y−2)+6(z−3)=0
⇒ 12x+6y+6z−42=0
or 2x+y+z−7=0 ...(ii)
P(−μ+3,μ−4,6μ−5) is the general point for line (i)
If this point lies on plane (ii), we have
−2μ+6+μ−4+6μ−5−7=0⇒μ=2
∴ P(1,−2,7) is the point of intersection.