The coordinates of point when (x1,y1) and (x2,y2) are divided in m:n
(i) internally is (mx2+nx1m+n,my2+ny1m+n)
(ii) externally (mx2−nx1m−n,my2−ny1m−n)
Let the point be P(h,k)
(1) For internal division
h=2(4)+3(−1)2+3=55=1k=2(−5)+3(2)2+3=−45⇒P(1,−45)
(2) For external division
h=2(4)−3(−1)2−3=8+3−1=−11k=2(−5)−3(2)2−3=−10−6−1=16⇒P(−11,16)