Find the coordinates of the point which is equidistant from the four points O(0, 0, 0), A(2, 0, 0), B(0, 3, 0) and C(0, 0, 8).
Let the required point be P(x, y, z)
Here, 0(0, 0, 0), A(2, 0, 0), B(0, 3, 0), C(0, 0, 8)
Since, (OP)2=(AP)2
(x−0)2+(y−0)2+(z−0)2=(x−2)2+(y−0)2+(z−0)2
x2+y+z2=x2−4x+4+y2+z2
4x=4
x=1
(OP)2=(BP)2
(x−0)2+(y−0)2+(z−0)2(x−0)2+(y−3)2+(z−0)2
x2+y2+z2=x2+y2−6y+9+z2
6y=9
y=32
(OP)2=(CP)2
(x−0)2+(y−0)2+(z−0)2=(x−0)2+(y−0)2+(z−8)2
x2+y2+z2=x2+y2+z2−16z+64
16z=64
z = 4
The required point = (1,32,4)