Given hyperbolas are
x2−y2=3a2.......(i)xy=2a2........(ii)
Equation of tangent to (i) at (√3asecθ,√3atanθ) is
x√3asecθ−y√3atanθ=3a2x√3a−y√3asinθ=cosθ.....(iii)
It also touches (ii)
Substituting x from (iii) in (ii)
(√3acosθ+ysinθ)y=2a2y2sinθ+√3aycosθ−2a2=0.......(iv)
As the line touches the curve so the roots must be equal
⇒D=0(√3acosθ)2−4(−2a2)sinθ=03a2cos2θ+8a2sinθ=03a2(1−sin2θ)+8a2sinθ=03a2sin2θ−8a2sinθ−3a2=03a2sin2θ−9a2sinθ+a2sinθ−3a2=03sinθ(sinθ−3)+(sinθ−3)=0(3sinθ+1)(sinθ−3)=0⇒sinθ=−13cos2θ=1−sin2θ⇒cosθ=±2√23⇒secθ=±32√2tan2θ=sec2θ−1⇒tanθ=±12√2
Substituting sinθ and cosθ in (iv)
y2sinθ+√3acosθy−2a2=0y2(−13)+√3ay(±2√23)−2a2=0y2±2√6ay−6a2=0⇒y=±√6a
Substituting y , sinθ and cosθ in (iii)
⇒y=±√6a⇒x=±√6a3
So the point of contact to hyperbola (ii) is (±√6a3,±√6a)
Point of contact to (i) is (√3asecθ,√3atanθ)
Substituting tanθ and secθ
⇒ point of contact (±3√6a4,±√6a4)