xcosϕ1+ysinϕ1=a.....(i)xcosϕ2+ysinϕ2=1xcosϕ2=1−ysinϕ2x=1−ysinϕ2cosϕ2
substituting x in (i)
(1−ysinϕ2cosϕ2)cosϕ1+ysinϕ1=acosϕ1−ycosϕ1sinϕ2+ysinϕ1cosϕ2cosϕ2=a(sinϕ1cosϕ2−cosϕ1sinϕ2)y+cosϕ1=acosϕ2sin(ϕ1−ϕ2)y=acosϕ2−cosϕ1
⇒y=acosϕ2−cosϕ1sin(ϕ1−ϕ2)
x=1−ysinϕ2cosϕ2
x=1−(acosϕ2−cosϕ1sin(ϕ1−ϕ2))sinϕ2cosϕ2
x=sin(ϕ1−ϕ2)−(acosϕ2−cosϕ1)sinϕ2sin(ϕ1−ϕ2)cosϕ2
x=sin(ϕ1−ϕ2)−acosϕ2sinϕ2+cosϕ1sinϕ2sin(ϕ1−ϕ2)cosϕ2
So the point of intersection is (sin(ϕ1−ϕ2)−acosϕ2sinϕ2+cosϕ1sinϕ2sin(ϕ1−ϕ2)cosϕ2,acosϕ2−cosϕ1sin(ϕ1−ϕ2))