xa+yb=1bx+ay=ab......(i)xb+ya=1ax+by=abby=ab−axy=ab−axb
Substituting y in (i), we get
bx+a(ab−axb)=abb2x+a2b−a2xb=ab(b2−a2)x+a2b=ab2(b2−a2)x=ab2−a2bx=ab(b−a)(b2−a2)x=ab(b−a)(b+a)(b−a)⇒x=aba+by=ab−axbby=ab−axby=ab−a(aba+b)by=ab(a+b)−a2ba+bby=a2b+ab2−a2ba+bby=ab2a+b⇒y=aba+b
So, the point of intersection is (aba+b,aba+b)