Let P and Q be such points that trisect the line segment AB in such a way that AP:PQ:QB=1:1:1.
Consider point P which divides the line segment AB such that AP:PB=1:2
Therefore, by Sectional Formula,
P(x,y)=(mx2+nx1m+n,my2+ny1m+n) where m:n=1:2
=(1×2+2×(−4)3,1×(−1)+2×(3)3)
=(−63,53)
∴P(x,y)=(−2,53).
Now, Q is the mid point of PB.
∴Q(x,y)=(x1+x22,y1+y22)
=(−2+22,53−12)
=(0,13)
∴Q(x,y)=(0,13)