Section formula :
Any point let say (x , y) divides the line joining
points (x1,y1) & (x2,y2) in the ratio m:n, then co-ordinates were given by the formula
x=x1×n+x2×mm+n
y=y1×n+y2×mm+n
(i) Divides the line internally, take m & n positive
(ii) Divides the line externally, take any one of them negative
Given points are P(a+b,a−b) and Q(a−b,a+b) and ratio a:b
(i) Let R(x′,y′) divides the line PQ internally
x′=(a+b)×b+(a−b)×aa+b
⇒x′=a2+b2a+b
y′=(a−b)×b+(a+b)×aa+b
⇒y′=a2−b2a+b
So, point R(a2+b2a+b,a2+2ab−b2a+b) divides the line PQ internally
(ii) Let S(x′′,y′′) divides the line PQ externally
Let us take n negative, then ratio is a:−b
x′′=(a+b)×(−b)+(a−b)×aa−b
⇒x′′=a2−2ab−b2a−b
y′′=(a−b)×(−b)+(a+b)×aa−b
⇒y′′=a2+b2a−b
So, point S(a2−2ab−b2a−b,a2+b2a−b) divides the line PQ externally.