The coordinates of point when (x1,y1) and (x2,y2) are divided in m:n
(i) internally is (mx2+nx1m+n,my2+ny1m+n)
(ii) externally (mx2−nx1m−n,my2−ny1m−n)
Let the point be P(h,k)
(1) Internal division
h=a(a−b)+b(a+b)a+b=a2−ab+ab+b2a+b=a2+b2a+bk=a(a+b)+b(a−b)a+b=a2+ab+ab−b2a+b=a2+2ab−b2a+b⇒P(a2+b2a+b,a2+2ab−b2a+b)
(2) External division
h=a(a−b)−b(a+b)a−b=a2−ab−ab−b2a−b=a2−2ab−b2a−bk=a(a+b)−b(a−b)a−b=a2+ab−ab+b2a−b=a2+b2a−b⇒P(a2−2ab−b2a−b,a2+b2a−b)