Let P, Q and R be the points that divide AB in four equal parts.
Let AP, PQ, QR, RB, k all be equal to k.
So,
AQQB=AP+PQQR+RB
=k+kk+k
=2k2k
=1:1
Therefore, Q divides AB in two equal parts, AQ and QB.
So, the coordinates of Q is,
(x1+x22,y1+y22)=(−2+22,2+82)
=(0,5)
Thus, C2=(0,5).
Similarly,
APPQ=kk
=1:1
So, point P divides AQ in two equal parts.
The coordinates of P are,
(x1+x22,y1+y22)=(−2+02,2+52)
=(−1,72)
Thus, C1=(−1,72).
Also, in the same way,
QRRB=kk
=1:1
So, point R divides QB in two equal parts.
The coordinates of R are,
(x1+x22,y1+y22)=(0+22,5+82)
=(1,132)
Thus, C3=(1,132).
Therefore, C1=(−1,72), C2=(0,5) and C3=(1,132).