Let P & Q be the points of trisection. Then AP:PB=1:2 & AQ:QB=2:1
(i) Let P divides AB in ratio 1:2
Hence m1=1;m2=2;x1=2;y1=−3;x2=−4,y2=−6
P(x,y)=P(m1x2+m2x1m1+m2,m1y2+m2y1m1+m2)=P(1(−4)+2(2)1+2,1(−6)+2(−3)1+2)
=P(−4+43,−6−63)=P(0,0)
(ii) Let Q divides AB in ratio 2:1
Here m1=2,m2=1,x1=2,y1=−3,x2=−4,y2=−6
=Q(2(−4)+1(2)2+1,2(−6)+1(−3)2+1)
=Q(−8+23,−12−33)
=Q(−2,−5)
∴ Hence the coordinates of points of trisection are (0,0) & (−2,−5).