Find the coordinates of the points which tisect the line
segment joining the points P(4, 2, -6) and Q (10, -16, 6)
Let P ≡ (4, 2, -6) and Q ≡ (10, -16, 6)
Let A and B be the point of trisection.
Then, we have :
PA = AB = BQ
∴PA:AQ=1:2
Thus A divides PQ internally in the ratio 1 : 2
∴A=(1×10+2×41+2,1×(−16)+2×21+2,1×6+2×(−6)1+2)
≡(10+83,−16+43,6−123)
≡(183,−123,−63)
≡(6,−4,−2)
⇒A≡(6,−4,−2)
AB = BQ
Therefore, B is the mid-point of AQ.
∴B≡(6+102,−4−162,−2+62)
≡(162,−202,42)
≡ (8, -10, 2)