Find the coordinates of the vertices of a triangle, the equations of whose sides are :
(i) x+y−4=0, 2x−y+3=0 and x−3y+2=0 (ii) y(t1+t2)=2 x+2 at1 t2, y(t2+t3)=2 x+2 a t2 t3 and, y(t3+t1)=2 x+2 at1 t3.
(i) The point of intersection of two sides will give the vertex
x+y−4=0 ...(1)
2x−y+3=0 ...(2)
x−3y+2=0 ...(3)
Solving (1) and (2)
x+y=4
y=4−x
Putting y in (2)
2x−(4−x)+3=0
2x−4+x+3=0
3x−1=0
x=13
Putting x in (1)
13+y−4=0
y=4−13=113
∴ One vertex is (13,113)
Solving (2) and (3), we get
y=2x+3 and putting in (3)
x−3y+2=0
x−3(2x+3)+2=0
x−6x−9+2=0
−5x=+7
x=−75
⇒ y=2x+3=2(−75)+3=−145+=15
∴ Second vertex is (−75,15)
For find vertex
x+y−4=0
x−3y+2=0
x=4−y
4−y−3y+2=0
4−4y+2=0
−4y=−6
y=32
⇒ x=4−y
4−32
8−32=52
∴ Third vertex is (52,32)
Hence co-ordinates of the vertices of the triangle are (13,113), (−75,15) and (52,32)
(ii) y(t1+t2)=2x+2at1t2, y(t2+t3)=2x+2at2t3 and ,y(t3+t1)=2x+2at1t3
2x−y(t1+t2)+2at1t2=0 ...(1)
2x−y(t2+t3)+2at2t3=0 ...(2)
2x−y(t3+t1)+2at1t3=0 ...(3)
Solving (1) and (2) using cross-multiplication method:
x−2at2t3(t1+t2)+2at1t2(t2+t3)
y4at1t2−4at2t3=1−2(t2+t3)+2(t1+t2)
⇒ x2at22(t1−t3)=y4at2(t1−t3)=12(t1−t3)
x=at22, y=2at2
Solving (1) and (3) using cross-multiplication method:
x−2at1t3(t1+t2)+2at1t2(t3+t1)=y4at1t2−4at1t3=1−2(t3+t1)+2(t1+t2)
⇒ x2at21(t2−t3)=y4at1(t2−t3)=12(t2−t3)
⇒ x=at21, y=2at1