We have,
The equation
x3−px2−qx−r=0 ...... in an A.P.
let the roots of a−d, a, a+d
Sum of roots = - coeff.of x2coeffof x3
a−d+a+a+d=−−p1
a=p
a=p3...........(1)
Both sum of roots = coeff.of xcoeffof x3
(a−d)a+a(a+d)+(a+d)(a−d)=q1
a2−ad+a2+ad+a2−d2−q
⇒3a2−d2=q
⇒3(p3)2−d2=q
⇒p2−3d2=3q
⇒3d2=p2−3q
⇒d2=p2−3q3
d=√p2−3q3
now,
the roots are.
a−d, a, a+d
p3−√p2−3q3, p3, p3+√p2−3q3
Hence, this is the answer.