Find the coordinatesof the foce, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.
x24+y225=1.
The equation of given ellipse is
x24+y225=1.
now 25>4⇒a2=25andb2=4
So the equation of ellipse in standard form is
y2a2+x2b2=1∴a2=25⇒a=5andb2=4⇒b=2
We know that c = \sqrt{a^2 - b^2}\\
∴c=√25−4=√21
∴ Coordinates fo foci are (0,±c)i.e.(0,±√21)
Coordinates fo vertices are (0,±a)i.e.(0,±5)
Length of minor axis =2b=2×2=4
Eccentricity (e)=ca=215
Length of latus rectum =2b2a=2×45=85