wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the critical numbers of the function. (Enter your answers as a comma-separated list. If an answer does not exist, Write DNE.) f(x)=x3+3x272x


Open in App
Solution

Step 1: Find the value of f'x.

Differentiate the function f(x)=x3+3x272x with respect to x on both sides.

Use the derivative formula ddxxn=nxn-1

f'x=ddxx3+3x2-72xf'x=3x2+6x-72

Critical numbers occur when the derivative of the function equals zero.

Step 2: Set f'x=0 .

Equate f'x to 0.

3x2+6x-72=03x2+2x-24=0x2+2x-24=0x2+6x-4x-24=0

Group the common terms in the equation x2+6x-4x-24=0.

xx+6-4x+6=0x+6x-4=0x=-6,4

Therefore, the critical numbers are x=-6,4.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definite Integral as Limit of Sum
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon